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Introduction 

 

Zircon occurs in a wide variety of crust- and mantle-derived rocks, including volcanic rocks such as 

kimberlite, lamproite, MARID (mica-amphibole-rutile-ilmenite-diopside), and more. Some of these 

volcanic rocks may host diamond and/or sample portions of the earth’s uppermost lower mantle. When 

erupted to the surface, zircon is a relatively useful kimberlite indicator mineral as it is compositionally and 

physically robust: it can survive weathering in a variety of surface environments (including transport in 

fluvial or glacial systems). Zircon trace-element compositions are sensitive to the equilibrium mineral 

assemblage and the original petrogenesis of the source rock (e.g., Hoskin and Ireland 2000). 

 

A previous study applied machine learning (ML) to trace-element compositions of igneous zircons, reported 

to predict zircon source rock with >75% confidence (e.g., Belousova et al. 2002). Their dataset contained 

relatively few zircons from kimberlites, carbonatites, and other small degree mantle melts, and did not 

include zircon from MARID, kamafugite, and other uncommon rock types. Recent studies have applied 

ML to trace-elements in zircons from a wide range of rock types, using updated statistical approaches (e.g., 

Zhong et al. 2023; Itano and Sawada 2024). In this study we compile a new database of trace-element 

compositions for zircons from kimberlite and other igneous rocks such as carbonatites. These zircons 

include a subset from kimberlites known to contain a population of sub-lithospheric diamonds. Because 

many of the largest, most valuable diamonds in a given mine are often of sublithospheric origin (Smith et 

al. 2017), there is considerable interest in “fingerprinting” such diamonds. Zircon from kimberlite is thought 

to belong to the low-Cr megacryst suite, formed near the base of the lithosphere from asthenosphere-derived 

melts. As such there may be indirect links between such zircon and superdeep diamonds. Considering recent 

advances in statistical methods and a greater awareness of the igneous rocks from which zircon may be 

derived, we use these data to calibrate new ML models for enhanced source rock discrimination, and 

specifically, the identification of kimberlitic zircon, especially in tropical regions where zircon might be 

one of the few kimberlite-related minerals to survive the weathering environment. 

 

Dataset and Methods 

 

We have determined the trace-element compositions (REE, Y, Sr, Nb, Ta, Hf, Th, U, and Ti) for >250 new 

zircons from a wide range of global kimberlites, including the Juína location (Brazil) as well as carbonatites. 

These data were acquired by LA-ICP-MS at the University of Alberta. We have also compiled >1,500 
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published trace-element compositions for zircons with known source rocks, including from syenite, 

nepheline-syenite, ultramafic lamprophyre (UML), kamafugite, MARID, and lamproite (Figure 1). A set 

of kimberlite zircons were sampled from areas with known superdeep diamond populations, e.g., Juína in 

Brazil, Monastery in South Africa, and Mothae in Lesotho.  

 

Results and Discussion 

 

Zircons in this study have a wide range of trace-element compositions, though some separation is visible 

between zircons from many different rock species, for some elements (Figure 1).  

 
Figure 1: Prinicipal component analysis (PCA) plot for zircon Nb/Ta ratio and Eu-anomalies (2×EuN)/(SmN+GdN), 

“N” = chondrite-normalized (McDonough and Sun 1995). Contours correspond to constant Mahalanobis distance with 

an outlier cutoff equivalent to the 0.95 percentile. CROL = carbonate-rich olivine lamproite, UML = ultramafic 

lamprophyre.  

 

When the kimberlite zircons compiled in this study are tested using the Classification and Regression Tree 

(CART) approach of Belousova et al. (2002), ~ 36% misclassify, primarily as carbonatite or syenite. For 

zircons from MARID and ultramafic lamprophyres – neither types included in the Belousova et al. (2002) 

study – the former classify as carbonatite, syenite, and kimberlite, and the latter as kimberlite. Recent studies 

have shown that CART is generally outperformed by other ML methods (Fernández et al. 2014). Hence, 

new ML approaches applied to larger zircon databases may enhance source rock classification. In this study 

we calibrate new zircon classification models using the random forest (RF) method (Breiman 2001). 

 

Carbonatites are one of the few rock types where zircon can occur with similar physical dimensions to the 

megacrysts found in kimberlite. Compositional overlap between the two groups for some elements is 

evident (Figure 1), and indicated by the classification outcomes produced using the Belousova et al. (2002) 

approach (above). To improve this, we calibrate RF models for zircon discrimination using Eu-anomalies 

and Nb/Ta, Th/U, Sm/Nd, and Lu/Gd ratios. Using these variables in our preliminary models we achieve 

classification error rates of ~ 7±4 % (2σ; 10-fold cross validation). Compositional overlap occurs, due 

primarily to ~ 6% of compiled kimberlite megacryst zircons having compositions similar to many 

carbonatitic zircon (e.g., Figure 1), with elevated Nb/Ta ratios and low Eu-anomalies (<0.5).  

 

MARID are an additional suite of mantle-derived rocks for which zircon can have comparable size to 

kimberlite megacrysts (Hoare et al. 2021). Hence, we use RF to assess whether trace-element compositions 

can separate zircons from MARID and kimberlite. We calibrate an RF model using Y, Lu, and Nb/Ta and 

Th/U ratios, with the MARID group composed only of zircons from Bultfontein, Kampfersdam and the 

nearby Boshoff road dumps. This model has an error rate of ~ 10±5 % (2σ) and identifies the Nb/Ta ratio 

as the most important discriminant variable, with MARID zircons tending toward higher values (possibly 
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due to equilibrium with rutile, with DTa>DNb; Klemme et al. 2005). A much smaller subset of MARID 

zircon (primarily from Bultfontein) have complete REE data; for this subset, MARID zircon tend to have 

lower Sm/Nd ratios than kimberlite megacrysts. Whether these features are characteristic of MARID zircon 

or unique to Bultfontein and/or the Boshoff road dumps requires further study. 

 

Finally, we assess whether zircon megacrysts from kimberlites containing a superdeep diamond population 

have a unique compositional “fingerprint” compared to those from kimberlites dominated by lithospheric 

diamonds. We calibrate a RF model for classification of zircon from “superdeep” kimberlites by compiling 

elemental data for zircon megacrysts from the Juína, Monastery, and Mothae kimberlite pipes, using Eu-

anomalies and the Lu/Gd, Sm/Nd, Nb/Ta, and Th/U ratios. Classification error rates using RF are ~ 17±5% 

(2σ) with the Nb/Ta and Th/U ratios found to be important for classification. However, the range of Nb/Ta 

and Th/U ratios among zircon from kimberlites containing superdeep diamonds in this study is relatively 

narrower than, and overlaps with, the range of values reported for zircons from kimberlites dominated by 

lithospheric diamonds; this narrow compositional range may drive some of the discrimination. This result, 

while preliminary, provides the impetus for further investigation and will require analysis of more zircons 

from more localities, as well as additional classification variables. 

 

Conclusions 

 

Using a robust database of zircon trace-element compositions from a variety of igneous rocks, including 

kimberlite, we produce new ML models that can effectively discriminate kimberlitic zircons from those in 

other igneous rocks, with the exception of ultramafic lamprophyres, generally with error rates <15%. 

Successful identification of zircon from kimberlites containing superdeep diamonds, however, is more 

complex and, despite some promise, requires more data for samples from kimberlites with superdeep 

diamond populations. Our expanding new database for carbonatitic zircons may also have potential 

applications in using zircon to search for carbonatite-hosted critical metal deposits. In a kimberlite/diamond 

context, application of these statistical methods to detrital zircons can reduce the cost of exploration or 

misdirection of exploration efforts.  
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